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GRAPHIC AND MECHANICAL COMPUTATION OF THICKNESS OF STRATA
AND DISTANCE TO A STRATUM.

By J. B. MERTIE, Jr.

INTRODUCTION.

Two problems that constantly confront the
stratigraphic and structural geologist are the
computation of the thickness of a geologic
section and the computation of distance to a
stratum from some designated point at the
surface when the position of the outcrop of
that stratum is known. The solution of each
of these problems is divisible into three parts—
a geometric solution, a trigonometric generali-
zation, and simplified methods of computation.
It is the purpose of the present paper to con-
sider these three phases of each of the two
problems above mentioned.

Analyses of these two problems, so essen-
tially a part of the geologist’s work, have
doubtless been previously made, but it is odd
that so little has been published on this sub-
ject, and particularly significant that most of
the published material has been of recent
origin. The obvious inference is that we are
approaching a period in the development of
geologic science when accurate data will be
considered more and more essential to corvect
stratigraphic interpretation; and the recent
interest shown in these and related problems
is an index of the general appreciation of this
fact by geologists. In other words, geology is
changing progressively from a qualitative to a
quantitative science, and older methods are
giving way to newer ones more adapted to
present needs.

The only fault that may be found with the
material so far published on this subject lies
in its incompleteness. In some of the pub-
lished papers the writers have not worked out
general formulas but have confined themselves
to the consideration of special cases, the solu-
tion of which, though useful, is not of universal
application. In other articles, in which univer-
sal solutions have been evolved, the treatment
is not well balanced because the above-men-
tioned three phases of each of the two main

problems have not been considered adequately.
Thus, a geometric solution is of interest, but
if that alone comes within the scope of the arti-
cle its value will be impaired because no for-
mula is deduced, and the geologist will have
to repeat the solution for every individual set
of data. The trigonometric solution is of much
more value, but it will not be used by many
workers because it requires mathematical com-
putation. It is very desirable that graphic or
mechanical methods be employed in the solu-
tion of all geologic formulas, first because in
using such methods no knowledge of trigo-
nometry is required, second because of the
saving in time they permit, and third because
the resulting solutions are well within the limits
of accuracy imposed by the nature of geologic
observations.

The principal publications known to the
writer in which the problems of thickness of
strata and depth to a stratum are considered
are as follows:

Hayes, C. W., Handbook of field geology, 1909.

Roe, J. W., Application of descriptive geometry to
mining problems: Am. Inst. Min. Eng. Trans., vol. 41,
pp. 512-533, 1911.

Smith, W. S. T., Some graphic methods for the solution
of geologic problems: Econ. Geology, vol. 9, No. 1, 1914.

Palmer, H. S., Nomographic solutions of certain strati-
graphic measurements: Econ. Geology, vol. 11, No. 1, 1916.

Palmer, H. S., New graphic method for determining the
depth and thickness of strata and projection of dip: U. S.
Geol. Survey Prof. Paper 120, pp. 123-128, 1919.

In Hayes’s Handbook trigonometric for-
mulas are derived, but only that special case
is considered where the field traverse is made
perpendicular to the strike of the beds. Both
Roe and Smith have made descriptive geometric
solutions, but neither derives formulas there-
from. In his first article Palmer has derived
the general formula for the calculation of
thickness of strata and developed three-variable
alinement charts for its graphic solution. In
his second article he has developed three-vari-
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40 .
able alinement charts for the solution of both
thickness and depth of beds, but only in the
plane perpendicular to the strike of the for-
mation. The present paper is devoted to four
topics, as follows:

1. The graphic and numerical solution of the
problem of thickness of strata and the con-
struction of a five-variable alinement chart for
the graphic solution of the general formula.

2. The graphic and numerical solution of
the problem of distance to a stratum, and the
construction of a five-variable alinement chart
for the graphic solution of the general formula
for depth to a stratum.

3. The construction of a chart for the graphic
solution of a right triangle, to be used in con-
junction with the two charts above mentioned.

4. The construction of a trigonometric com-
puter for the graphic solution of all trigono-

metric formulas that may be used in geologic

field work.
THICKNESS OF STRATA.

OUTLINE.

It is required to find the thickness of geo-
logic strata lying between two known points,
when the following data are given:

1. The horizontal and vertical location of
two points, which may be considered the begin-
ning and end points of a traverse.
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in elevation between the two stations, (¢) slope
distance between the two stations, (d) hori-
zontal distance between the two stations.
Therefore four sets of data are given, and these
together with the answer (thickness of strata)
will necessarily produce a trigonometric equa-
tion of five variables.

GEOMETRIC CONSTRUCTION.

In the first publication by Palmer, previously
mentioned, the general formula for this prob-
lem is derived. A different solution using
descriptive geometry, from which the formula
is derived, is here used. It is well known that
two cases requiring this formula exist—(1)
where the dip of the beds and the slope of the
hillside are in opposite directions, which is the
more usual condition; and (2) where the dip
of the beds and the angle of slope of the hillside
are in the same direction. The solution for the
first of these cases is here given.

In figure 2, let AB be a horizontal reference
plane which passes through the station S,.
Let s be the slope distance between the two
stations S, and S, (traversed distance), h the
horizontal distance between the two stations,
e the difference in elevation between the two
stations, and ¢ the angle of slope of the hillside.
Let « be the azimuth angle of the traverse, or
angle between the di-
rection of traverse and
the strike of the forma-
tion, and let & be the
angle of dip of therocks.
It will be assumed that
s and ¢ are given. By
revolving the right tri-
angle S;S,0 from its
vertical position down-
ward 90° on OS as an
axis into the plane of
reference, ¢ and h may -
also be measured.

A 3 B

FIGURE 2.—Geometric representation of the thickness of a stratum when the dip of the stratum and the rela-

tive positions of a point on the upper surface of the stratum and another on the lower surface are given.

Let S,T be the strike
of the beds. It will also
be the trace of the base

2. The azimuth angle between the strike
~ of the rocks and a line joining the two points.
3. The dip of the rocks.
In connection with No. 1, any two of the fol-
lowing measurements will sufﬁce (a) Angle of
slope between the two stations, (b) difference

of the stratum to be
measured upon the reference plane. Through
O, the horizontal projection of S, upon the
reference plane, draw OM parallel to S,T. Lay
off ON=0S,=e¢. Then, ¢ and é being known,
the right triangle NOL, which has been re-
volved downward 90° on OL as an axis into the
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plane of reference, may be measured, thus deter-
mining the distance OL. The line LK drawn
parallel to S,T is the trace of the top of the
stratum upon the reference plane. Draw a
line connecting and perpendicular to LK and
S,T. Such a line, EH, is the distance between
the traces of the outcrops of the base and top
of the stratum, upon the horizontal plane.
When 6 and EH are known the right triangle
HDE may be revolved 90° upward on EH as an
axis into the plane of reference and the thick-
ness of the stratum (DE or f) may be measured.

TRIGONOMETRIC FORMULA.

The trigonometric solution from this con-
struction is as follows:

t=HR+RE) sin
HR=h sin « and h=s cos ¢

. HR=ssin a cos o

RE and e=s sin b

bl
tan & ‘
. |

$ sin o 1

2 RE= ‘

tan 6

Hence

i
: |
t=(s sin @ cos o +o o O sin 6
tan é ;
|
t=s (sin o sin & cos o+ cos § sin o)

When the dip of the beds and the slope of the
hillside are in the same direction, the + in the
formula changes to —. The generaﬂ formula
therefore is 3

t=s (sin a sin 8 cos ¢+ cos Bsinia) b ()

GRAPHIC REPRESENTATION OF THE FORMULA.,

GENERAL PRINCIPLE. |

Computations may be performe(h numer-
ically, graphically, mechanically, or by a com-
bination of methods. Numerical solutions
of formulas require the use of logarithmic
tables and are avoided when possﬂﬁe chiefly
because they require too much time. It is
highly desirable to represent formulas graph-
ically or to compute them by some mechanical
device based on a graphic representation of
the functions involved. If some one formula
is used a great deal, it should preferably be
represented graphically, thus saving much time
in computation and reducing greatlr% the lia-
bility of errors in the result. If a variety of
formulas are being used, it will pérhaps be
found more convenient to perform the com-
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putations by means of some universal com-
puting machine, such as a slide rule.

The formula for the thickness of a stratum,
as above given, is one that may be used re-
peatedly in certain kinds of stratigraphic work
or only occasionally in other kinds but cer-
tainly is of use to every stratigraphic geologist.
There are several objections to the numerical
computation of this formula. First, too much
time is required; second, the use of figures
introduces a greater liability to error than a
graphic computation; and third, the accuracy
of the answer, if five-place logarithmic tables
are used, is much greater than the character of
the original data justifies. The matter of
needless accuracy is often overlooked by geol-
ogists, with the result that meaningless figures
and incongruous results are sometimes pub-
lished. In general it is true that in formulas
used by geologists in the field and office some
one of the variables will depend on an obser-
vation of the strike or dip of rocks. The
answer to the formula should obviously be no
more accurate than the least accurate of the
component variables. For example, it is very
doubtful whether determinations of strike or
dip can be made with an error of less than 1°.
But even if 1° represents the maximum prob-
able error in careful work, it must be remem-
bered that geologic strata do not by any means
have mathematically perfect surfaces. There-
fore an additional possibility of error is intro-
duced in the liability of the measured direction
of strike or dip of surface to change within a
comparatively short distance, thus vitiating
a most carefully made measurement. Extreme
accuracy in computation of geologic formulas
is therefore neither needful nor desirable, and
graphic methods should be used.

The graphic representation of a formula is
commonly accomplished by means of Cartesian
coordinates, but this system has serious draw-
backs when equations of more than two varia-
bles are to be plotted. When equations of
three variables must be represented, a system
of curves must be drawn and an awkward
interpellation used. For equations of more
than three variables Cartesian coordinates are
not suitable. The equation

t—s (sin « sin & cos o 4 cos § sin ¢)

comprises five variables, namely, ¢, s, «, §, and
o. Equations of three variables are most easily
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represented by means of a nomograph or aline-
ment chart, which in reality is a system of plot-
ting by means of parallel coordinates. Three
excellent treatments of this method of graphic
analysis have been written, by D’Ocagne,’
Lipka,? and Peddle,® and the reader is referred
to their publications for an understanding of
the theory of the alinement chart.

In plotting the above formula Palmer * used
their three-variable nomograms, thus necessa-
rily solving the formula by several independent
operations. Thus sin § and cos ¢ were mul-
tiplied in one operation, and the product mul-
tiplied by sin « in a second operation. Cos &
and sin ¢ were multiplied in a third operation.
The products of the second and third opera-
tions were then added numerically by a fourth
operation, and this sum multiplied by s in a
fifth operation, to solve for ¢. Three charts
were required for these operations, one to mul-
tiply sines by cosines, a second to multiply
numbers by sines, and a third to multiply num-
bers by numbers. Moreover, as the nomo-
graphic solution with parallel scales, which is
the one employed, is essentially a method of
addition and subtraction, and as all the above-
mentioned operations that were performed
graphically involve multiplication, all the cal-
ibrated scales were necessarily logarithmic
scales. A serious drawback exists in the use of
logarithmic scales, because the accuracy of the
reading is greater at one end of the scale than
at the other, and this weakness is specially pro-
nounced in logarithmic scales of the trigo-
nometric functions. By the method here used,
the solution of the equation

t=¢ (sin « sin & cos o+ cos & sin o)

is effected by a compound operation, in which
a single chart and natural instead of logarith-
mic functions are employed.

The above equation, containing five varia-
riables, can not be plotted directly by any
method in two dimensions known to the writer,
but by separating it into two parts and equat-
ing each of these to some auxiliary variable, the
equation may be readily charted. Thus the

1 D’Ocagne, Maurice, Traité de nomographie, Paris, Gauthier-Villars,
183 9I;iplm, Joseph, Graphical and mechanical computation, New York,
191} 8I-’eddle, J. B., The construction of graphical charts, 2d ed., New York,
1941 9I.’a,lmer, H. S., Nomographic solutions of certain stratigraphic meas-
urements: Econ. Geology, vol. 11, 1916.
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equation may be written in two parts as
follows:

t'=sinasindcosec + cosdsino._ .

3)
where t’ is the introduced auxiliary variable.
Equation (2) is a problem in division or, when
written t=¢’ s, a problem in multiplication and
therefore can not be plotted with natural scales
if an alinement chart with parallel scales is used.
By employing a nomographic Z chart, how-
ever, natural scales may be employed in multi-
plication and division, and this is the method
which has been used.

Equation (3), however, is well adapted to
graphic representation by an alinement chart
with parallel scales, as the primary operation
to be performed is addition or subtraction, as in-
dicated by the symbol 4. This equation, how-
ever, presents a difficulty in that it expresses
a relationship between four variables—that is,
t', «, 8, and . If one of these variables could
be regarded as a constant, the equation would
be reduced to a three-variable type. The
obvious solution consists in assigning to one
variable a series of fixed values and com-
puting the resulting curves for each particular
value. Two variables will be plotted on two
parallel scales, and a third variable, whose
position is partly determined by the fixed value
assigned to the fourth variable, will be plotted
between the two parallel scales. For each
fixed value assigned to the fourth variable a
different curve of the third variable will be de-
veloped, and the composite result will be a series
of curves expressing the third variable in terms
of the fourth. These curves may be joined to-
gether by a set' of auxiliary curves, drawn
through points of equal value of the third va-
riable, and a gridwork of intersecting curves
will be formed which will express graphically
the true relationship between the third and
fourth variables.

In the practical application of this method
the variable ¢’ is assigned to one of the outer
parallel scales, in the plotting of both equations
(2) and (3). The same scale modulus is used,
and as both solutions involve only natural
functions, the scale of ¢’ for each solution is the
same, and a common support for the scale ¢’
may be used. Three parallel supports are
therefore used to plot the variables «, ¢/, and ¢.
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The variables § and o are expressed in a grid-
work of curves lying between « and ¢, and the
variable s is plotted upon a diagonal line con-
necting opposite ends of the ¢’ and ¢ scales. As
no numerical value of ¢’ is required, the support
of the t" scale is not calibrated. Thus in the
operation of the chart a point upon the « scale
representing some value of « is connected by a
straight line with a point which represents given
values of § and ¢ in the gridwork of curves and
produced to meet the uncalibrated scale ¢’.
The intersected point is then connected by an-
other straight line with a point on the diagonal
line representing some value of s and projected
to the t scale, the reading on which shows di-
rectly the thickness of the stratum, vein, or
formation.

MATHEMATICAL ANALYSIS.
EQUATION (2).
The equation ¢=¢'s may be written as

S ) =1, W) -f; ()
where t=wu, t'=v, and s=w. In figure 3, let ¢’
and ¢ be plotted upon two parallel straight-line
scales, oppositely directed. The diagonal line
joining the zero ends of these two scales will be
the locus of the scale z and will be considered
to have a length of k. Draw any nomographic
index line joining the ¢’ and ¢ scales and inter-
secting the z scale. In the diagram,

T A B8

¢

F—zY
The above equation is evidently in the form
Ji w)=f, @)-fyw. Therefore, assigning scale
moduli of m, and m, respectively to f;(x) and
f» (v), we may say that

r=m,f,(u) and y=m,f,®)
As t’ and therefore ¢ and s must be plotted as
natural functions, in order to be coordinate
with the chart of equation (3), the Z type of
alinement chart is used. The method of analy-
sis is that used by Lipka.” Hence the equation
becomes

r=

m, f; (u) = - myf, ()

or

fl (u) = m, (]C v ()

5 Lipka, Joseph, Graphical and mechanical computation, pp. 65-66,
New York, 1918.

Therefore
m,2

m,(k—2z) _f3 (w)

and from the solution of thls equation it is
found that

m, f; (w)
ml,f;i(w) +m2_— T T

From equation (4), by substituting the specified
moduli and values of £ (w), a series of values of
z can be computed, which will represent the
calibration of the diagonal scale, or scale of s.

2=k (4)

EQUATION (3).

Consider the positive form of equation (3)

that is to be plotted:

¢/ =sin « sin § cos ¢ +cos 6 sin @
or ;

#’ —sin « (sin 6 cos ¢) =cos § sin ¢
If some definite value is assigned to ¢, so that
cos ¢ and sin ¢ become temporarily constants,
the equation may be written

Si(w) —£,®@). f(w) =f,(w)

where # =u, a=v, and §=w. In this form we
have an equation of three variables, one of

PR aR o e

o o st ettt o

» t
FIGURE 3.—Diegram to illustrate the method of calibrating the diagonal
scale of a Z chart.

which (w) occurs on both sides of the equation
as two different functions—that is, f;(w) and
fi(w). Such an equation, when plotted as an
alinement chart, will require two parallel
straight-line scales and one curvilinear scale.
The two parallel straight-line scales, represent-
ing the functions f,(u) and £,(v), may be drawn
and calibrated in the ordinary manner used
in building the simpler type of alinement
chart, but the curvilinear scale representing
the two functions of the variable w must either
be projected graphically or computed by some
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system of coordinates. The latter procedure
is here shown, the solution given by Lipka ¢
being followed very closely.

In figure 4, let « and ¢’ be plotted on two
parallel straight lines, as shown; and let § be
represented by some hypothetical curvilinear
line. Let the zero point of each of the two
parallel scales be connected by a base line,
whose length is k; and let the two outer scales
be so placed that this base line lies perpendicu-
lar to both. In this way a system of rectan-
gular Cartesian coordinates will be assured.
Take for an origin of such a coordinate system
the intersection of % with the ¢’ scale. Draw
any nomographic index line connecting the «
and ¢’ scales and cutting the & scale. From
the intersection of the index line with §, draw
a line parallel to # to meet the « scale and
another parallel to the « scale to meet Fk.
From the intersection of the index line with
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Then in order to satisfy the equation, it is
necessary that

]C'il Z =&j,”;§0) and kk_zzl:mlfg(w)
Solving the first equation, we find that
km, f; (w)

A )

And solving the second equation and sub-
stituting in it the value of z, frome quation (5),

we find that mym,f, (w) (6)
R AL

The values z and 2, are the rectangular co-
ordinates of any point on the curvilinear scale,
representing a definite value of §, measured
from the intersection of % and the t’ scale as
an origin. The locus of the curvilinear scale
8 can then be determined, for a series of as-
signed values of & will give the coordinates of
a series of points which may be joined
together into a smooth curve.

To plot such a curve, however, a fixed
value was assigned to the variables. There-
fore for every assigned value of ¢ anew curve
will result. In the preparation of the chart
a series of such curves may be computed
for a regular series of values of ¢. If only

2=

"

+  asingle curve were charted it would be cali-
*  brated in terms of §, in a way similar to the

.4____-_____§<<_V-_——1—-»>
'
'
/

F1GURE 4.—Diagram to illustrate the method of determining the locus of the
curvilinear scale in an alinement chart consisting of two parallel straight-

line scales and a curvilinear scale.

the ¢’ scale, draw a line parallel to k. In the
diagram,
y—z:z2—x::k—z :2
2y —zz,=kz—kr—zz, +2z2
kx—zz+z, y=Fkz
(k—z) z—2zy=kz

I AN
G Ty o e

This equation is evidently in a form similar
to the one to be plotted—that is,

filw) —£,0). f;(w) =f,(w)
Therefore, assigning scale moduli of m, and m,
respectively to f;(x) and f,(v), we may say that

r=m,f;(w)

6 Lipka, Joseph, op. cit., pp. 106-107.

and y=—m,f,(v)

parallel straight-line scales. But with a se-
ries of such curves the points on each curve
that represent like values of 6 are joined
together, forming auxiliary intersecting
curves that may be regarded as loci of definite
values of 8. The original curves may then be
regarded as loci of definite values of ¢, and we
shall have a series of intersecting curves repre-
senting the relationship between the variables
d and o. : :
PREPARATION OF CHART.

The complete formula for the thickness of a
stratum was charted by the methods here
described. (See Pl. VI.) The details of the
process have to do mainly with the selection
of suitable scale moduli and the selection of
such values for the variables s, «, 8, and ¢ that
the resulting scales will have an adequate and
balanced calibration.

Little need be said of the preparation of
equation (2)— that is, =#’s. From the pres-
ence of the + sign in the general formula it
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results that both a positive and a negative
scale for both ¢’ and ¢ are required. A scale
modulus of 10 was adopted for the original
drawing, calculation of the ¢ scale being thus
eliminated. The ¢’ scale, though uncalibrated
in the finished chart, was calibrated for pur-
poses of projection in the actual work, and the
calibration may be shown to be merely a
natural sine scale. The scale modulus of 10
likewise eliminated calculation in the prepara-
tion of this scale as well as in the preparation
of the a scale. The numbers 1, 2, 3, etc., might
have been used on the ¢ scale in keeping with
slide-rule practice, instead of 100, 200, 300,
etc. But as this chart is to be used solely to
compute the thickness of geologic strata, it has
seemed best to the writer to calibrate the scale
in terms of the probable range of answers that
will be obtained. The s scale has accordingly
been numbered to accord with this conven-
tion.

In the plotting of equation (3)—that is, ¢’ =
sin « sin § cos o +cos § sin s—one point in par-
ticular requires explanation. For the posi-
tive form of the equation, only positive values
of ¢ will result, but for the negative form of the
equation both positive and negative values of
t’ will be obtained. Hence two nets of 6 and ¢
curves would be required, one with positive
and one with negative values; but only a single
a scale, the positive one, would be necessary.
To avoid drafting these two nets of § and o
scales, both positive and negative a scales were
drawn, and only one § and o network. In
using the chart, therefore, the positive values
of o are used for a solution of the normal or
positive form of the general equation, and the
negative values of a in solving the negative
form of the general equation. This procedure
is indicated on the chart.

As stated, the curves of § and o will ordi-
narily be calculated by some system of coordi-
nates and joined together into smooth curves.
In the case of this particular equation (#'=sin
a sin § cos o +cos § sin o), however, the com-
pensating form of the functions of § and o—
that is, sin 8 cos ¢ against cos 8 sin c—results in
a series of curves which are most easily pre-
pared by a projective method. It is unneces-
sary to go into an analysis of the method, but
a statement of the method used is given. It is
stated above that a preliminary sine calibra-
tion was used on the ¢’ scale. The positive

32333°—22 4
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and negative end points (90° positions) of the
a scale being used as points of projection, two
series of radiating lines were drawn to the
points of sine calibration on the ¢’ scale. The
intersection of these two sets of radiating lines
gave the loci of the required curves. Each of
these curvesistangent to the base of theisosceles
triangle that bounds the network, and each
emerges to intersect both sides of this triangle.
Each curve serves a double purpose, therefore—
as a ¢ curve and as a curve of the complemen-
tary value of 5. As it is hard to trace several
curves past a rather flat zone of tangency, the
curves are doubly named, in order to avoid that
necessity. Every curve cuts every other curve,
and hence an intersecting point for values of &
and o can always be found. . Only one equivo-
cal condition will be noticed, and that is where
complementary values of § and o are given as
field data. Under this condition, the same
curve represents both values, and the point of
tangency of the curve with the base of the
isosceles triangle must be regarded as the point
of intersection of a & curve and a ¢ curve—that
is, one limb of the curve will be regarded as a
3 curve, and the other limb as a ¢ curve. The
o or angle of slope calibration was carried up to
90°, and this is open to criticism by field geolo-
gists, for hillsides of greater slope than 30° are
rare. But the chart is also intended for meas-
uring geologic sections in mines as well as in
the open, and for this purpose the complete
range from 0° to 90° for ¢ is required.

A small index chart showing five hypothetical
points joined by a compound nomographic
index line has been added as a guide to anyone
using the chart.

USE OF CHART.

The use of the chart (Pl. VI) in obtaining
the thickness of geologic strata is simple.
At the left side of the chart is the « scale, on
which are plotted the azimuth angles between
the strike of the rocks and the line of traverse.
This calibration comprises both a positive
and a negative scale, the positive one starting
at the middle of the line and extending up-
ward and the negative one starting at the
middle and extending downward. Use the
upper scale where the angle of slope and angle
of dip are in opposite directions and the lower
scale where the angle of slope and angle of dip
are in the same direction.
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Trace the two lines representing given
values of angle of slope and angle of dip to an
intersection in the & gridwork of curves.
With a straight edge, or a transparent straight-
line index, connect the point on the a scale
with the 6—¢ intersection, and the continua-
tion of this line will give an intersection on the
¢’ scale. Then connect the intersection on
the ¢’ scale with the point on the s scale which
represents a given value of slope distance, and
the continuation of this line gives an intersec-
tion on the ¢ scale, which when read shows the
thickness of the strata. It will be noticed
that both the ¢ and ¢ scales are divided into
upper and lower parts, just as the a scale is.
Also there are two s scales. When the first
operation gives an intersection on the upper
t' scale the second operation is performed
likewise on the upper s and ¢ scales; and con-
versely when the first operation gives an inter-
section on the lower ¢’ scale the second opera-
tion is performed on the lower s and ¢ scales.

The s and ¢ scales are calibrated 100, 200,
300, etc., instead of 1, 2, 3, etc., because the
answers will usually be of that magnitude.
If desired, however, these calibrations may
be regarded as 1, 2, 3, or 10, 20, 30, or 1,000,
2,000, 3,000, according to the use to which the
chart is to be put, just as the ordinary slide-
rule calibrations are used.

Another use to which the chart may be put,
in addition to finding the thickness of strata,
is the solution of equation (1) for any unknown
quantity, if the other four are known. Thus,
a, g, s, and ¢ may be known, and it is desired
to find 8. A line connecting the ¢ and s scales
will intersect the ¢’ scale. If this intersection is
connected with the given point on the « scale,
the resulting line will intersect the given o line
at a point which when read will show the
required value of &.

DISTANCE TO A STRATUM.
OUTLINE.

It is required to find the length of a tunnel,
shaft, or drill hole from some selected point to
some definite point on a stratum, when the
following data are given:

1. The horizontal and vertical location of the
starting point of the tunnel, shaft, or drill hole.

2. The horizontal and vertical location of a
second point, which may lie anywhere on the
surface of the stratum that is to be intersected.
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3. The azimuth angle between the strike of
the rocks and the line connecting these two
stations.

4. The azimuth angle between the strike of
the rocks and the direction of the tunnel,
shaft, or drill hole.

5. The angle of dip of the rocks.

6. The angle of dip of the tunnel, shaft, or
drill hole. : ;

In connection with Nos. 1 and 2, which may
be considered the beginning and end points of
a traverse, any two of the following measure-
ments will suffice: () Angle of slope between
the two stations, (b) difference in elevation
between the two stations, (¢) slope distance
between the two stations, (d) horizontal dis-
tance between the two stations. Therefore six
sets of data are given, and these, together with -
the answer (the tunnel distance), will neces-
sarily produce a trigonometric equation of
seven variables.

This is the most general form of the problem
of distance to a stratum. The problem usually
considered by geologists, particularly in oil
geology, and referred to as “depth to a stra-
tum,” is a special case of the more general
problem, wherein the line joining the two
points is vertical. In such a case the pitch is
90° and the line joining the two points has no
horizontal azimuth angle. In other words,
two variables are eliminated. The formula for
the general problem will be developed, but for
this paper only the formula for the special
case—that is, depth to a stratum—will be
charted.

GEOMETRIC CONSTRUCTION.

Let S, (fig. 5) be the starting point of the
tunnel, shaft, or drill hole, and let S, be a point
which is on the surface of the stratum that is
to be intersected but is not in the horizontal
plane through S,. Let S, and S, be repre-
senfed by their projections on the horizontal
plane through S, and let S,T be the strike of
the stratum at S,. The line S,C, parallel to
S,T, is also the strike line,- and AB is any
reference line through S, in the horizontal
plane. Also let & be the horizontal distance
from S, to S,, s the slope distance, e the differ-
ence of elevation, ¢ the vertical angle at S,
between the horizontal plane and the station
point S,, and « the azimuth of the line joining
S, and S, with reference to the strike line.
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Pass a vertical plane through S, and S, and
revolve this plane about the line joining the
projections of S, and S, into the horizontal
plane. The station S, will fall on S,” and the
right-angled triangle S,S,S,” will show in true
proportions the quantities o, s, b, and e. Pass
a vertical auxiliary plane, perpendicular to the
line of strike, through S,. Its trace on the
horizontal plane is the line P,. Lay off S,S,”
equal to ¢ and draw S,”’L’, making the angle
S,L’S,”” equal to §, the dip of the stratum at
station S,. On revolving the right-angled tri-
angle S,S,”’L/ 90° about the line S,I.” and then
90° about the vertical through S,, the point L’
will fall on L. Through L draw the line LM

FIGURE 5.—Geometric representation of the distance to a stratum when
the dip of the stratum, the position of a point on the stratum relative
to the starting point of measurement, and the horizontal and vertical
directions of the line of measurement are given.

parallel to the strikeline. The line LMis the line
in which the dipping stratum intersects the hori-
zontal plane through S,, and the strike line S, T
is the line of intersection of the dipping plane
with the plane through S,C and the station S,.

Let S, K be the projection of any sloping tun-
nel or drill hole which makes an angle p with

the horizontal plane and has an azimuth 8|

with reference to the strike line. Through
S, K pass a vertical plane. This plane will cut
the strike line S,T in point T and the line LM
in point M. If we revolve this plane about
S;M into the horizontal plane, the point T,
whose distance above the horizontal plane is e,
will fall at T/, M will be unmoved, and S,K’
will be the revolved position of the tunnel or
drill hole. The angle p will be shown in true
value. Draw the line T'M, cutting S, K’ in X'.
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The line T'M is the revolved trace of the verti-
cal auxiliary plane through S M and the dip-
ping stratum through S,, the point K’ is the
revoved position of the point in which S, K
pierces the inclined stratum, and M’ is the
revolved position of the point in which the
vertical through M cuts the tunnel or drill hole.
If the auxiliary plane is revolved back to its
original position the projection of K’ on the
horizontal plare will be found at K, and line
DK, drawn parallel to the strike line, is the
projection, on the horizontal plane through S,
of the line in which the dip plane is cut by
( plane P,, the horizontal plane through K.

The distance S,K” is the length of the tunnel
required and is to be derived in terms of the
known slope distance s and angles o, 6, and p.

TRIGONOMETRIC FORMULA.

From the figure:

SK'= Soh (S,T+TM+MEK) .
S, T hsisrllnﬁa dhek Sll;itrxl cﬁos o
T S%IIZS P tail 5 Silll g =si1i Zirtla(rrl 8
MK =M'K’ cos ;0=M—1\/[’1,‘%1\_4 cos p

but MM’ =

S.M tan p = (S,T+TM) tan p

_ /s sin « cos L
sin B8

s sin o )tan
sthanB RLO (a):

m—é(sm atan 8 cos o+sin o)

L s sin o

Tcosp sinBtandcosp
T'H=e¢— HT=5ssinoc—TM tan p
s sin ¢

sin B tan 6

52 (b)

=gsin o — tan p

{C AL ()

s sin o
T R (sin B tan 6 — tan p)

Then by substitution from equations (a), (b),

and (¢), .
MIE & - JaoVall Bt e sin « tan 6 cos ¢+sin ¢

sin B tan & sin B8 tan §—tan p
From the values of ST, TM, and MK just
found

S,T+TM=

s sin o
sin B tan &

ssin o cos o
sin B

s
gr R (sin o tan 8§ cos o-+sin o)

0§ smatanacos g+sino

sin B tan §—tan p

s tan p E
sin B tan &
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Adding these two last equations and factoring,
we get

4 : 1
SlK =38 (Sln atané cos o + sin O')S’lmtam

and as’
Rl
cos p
Therefore
S,K’=s (sin a tan & cos ¢ +sin o)
1

"cos p (sin B tan 6—tan p)

By means of a similar though simpler con-
struction it may be shown that the formula for
“depth to a stratum’ is d=s (sin « tan & cos
o +sin ¢), in which the term sin ¢ is positive or
negative as is determined by the value of o.
It therefore appears that the expression

1
cos p (sin B tan 6 — tan p)

in the equation for the value of d is a factor
which must be applied where the hole is other
than vertical. If the hole or shaft is vertical
this factor reduces to unity.

In the construction above given, the angles
o and § have been drawn in opposite directions,
and also the angles ¢ and p in opposite direc-
tions. It has been found that four different
formulas can result by the use of other con-
structions, and the composite formula covering
all cases is as follows:

d=s (sin « tan & cos ¢ +sin o)

1 AfE
cos p (sin B tan 6+ tan p)

The following rules govern the use of this
composite formula:

Use +sin ¢, when ¢ and é are in opposite direc-
tions.

Use —sin o, when ¢ and § are in the same direc-
tion.

Use + tan p, when ¢ and p are in opposite direc-
tions. ]

Use — tan p, when o and p are in the same direc-
tion.

GRAPHIC REPRESENTATION OF THE FORMULA.

As stated before, only that part of formula
(7) which relates to the measurement of
‘“depth to a stratum’ will be plotted here.
The whole formula could be plotted by the
same methods, but in this paper other methods
will be given for its solution.
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Consider the formula d=s (sin o cos ¢ tan &
+ sing). This may be split into two formulas,
like equation (1), and plotted by the same

methods. Inserting an auxiliary variable ¢/,
we have
I i (8)
e TR,
t/=sinacose tan §+sina___.___(9)

These two equations have been plotted exactly
as equation (1) was plotted, and the result is
shown on Plate VII. The two charts, Plates
VI and VII, are analogous in every respect, .
and no further explanation is required.

USE OF CHART.

The depth to a stratum is computed from
the chart (Pl. VII) exactly as the thickness of
strata is computed from Plate VI. All direc-
tions are identical.

GRAPHIC SOLUTION OF RIGHT TRIANGLE.

OUTLINE.

In the consideration of the two preceding
problems of thickness of strata and distance

o

h
FI1GURE 6.—Right-angled triangle showing the relations ofslope distance,
horizontal distance, difference of elevation, and vertical angle between
two station points.

to a stratum, it has been assumed, in the right
triangle determined by the two stations S,
and S, and the plane of reference (see fig. 6)
that the slope distance and angle of slope were
given. It may be, however, that instead of
s and ¢ any one of the five additional combina-
tions is given as follows: ¢ and h, o and ¢, s and
h,sand e, or hand e. It is desired to derive
graphically the values of s and ¢ when any of
these combinations are given.

TRIGONOMETRIC FORMULAS.

It may be seen at a glance that the solution
of this problem is essentially a graphic repre-
sentation of the sine, cosine, and tangent con-
ditions of a right triangle. The formulas in-
volved are as follows:

¢ —=ISERIN ottt UL A CHO)
li==s oS Lo o (Al
e=ntanigSeu LU0
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Each of these equations is in such form that it
may be written f, (u) =f,(v) - f3(w), and as
shown before such equations are best plotted
by means of the Z type of alinement chart.

PREPARATION OF CHART.

The method of plotting such equations has
already been described, in connection with the

D A
cos o scale

e scale
@)
sin a- scale

h_scale b
FI1GURE 7.EDiagram illustrating the combination of three alinement
charts for the solution of right-angled triangles.
plotting of equation (2). Two straight-line
parallel scales, oppositely directed, are used to
plot f,(u) and either of the other two variables,
in this instance f,(w). Both of these are nat-

ural scales. A straight line join-
ing the zero ends of these two
scales carries the scale of the
third variable, f,(v), and the
calibrations are calculated by
means of equation (4), as already
“explained. ¢ E..
In order to plot in one diagram Ik
all three of these equations, it is
necessary to use one or more of
the same scales in different solu-
tions. Equations (10) and (11)
have in common the variable s,
wherefore it has seemed best to
make a common scale of s, in the
solution of these two formulas.
In figure 7 the values of e are
plotted on CD, the values of sin -
o on AB, and the values of s on
the diagonal joining the zero ends
of these two scales. Two other
lines, however, AD and CB, may be drawn to
complete the square, and on these the values
respectively of cos ¢ and h may be plotted. In
this way a chart composed of five lines is pro-
vided for the plotting of e, k, s, sin o, and
cos .
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The chart is now complete except for the
solution of equation (12), which expresses the
tangent condition. For this, the scales ¢ and
h, already plotted, are used in conjunction with
a scale of tan o which is plotted on the line BD.
An index of two lines intersecting at right’
angles is used, such as EG and FH (figure 8).
The method consists in passing the line EG
through the given points on the e and A scales
and then sliding the index along EG until the
line FH passes through C. In this position the
angle DCF=g¢, and it is required to compute a
calibration of tan ¢ on the line DB so that a
reading indicated by the line HF on DB will
give the required value of o.

In figure 8
DC:DS:sin (135°—0): sin o
DS — DCsine _ DCsin o
“sin (135°—0¢) sin (45°+0)
D : sin o
" sin 45°  sin o +cos ¢
i E T e o LRl g -

sin ¢+ ¢os o

Therefore the tan o calibration, expressed in
the diagram by successive values of DS, was

FIGURE 8.—Diagram illustrating the use of an alinement chart for the solution of the tangent

condition in right-angled triangles.

computed by multiplying the length of the
sin ¢
sin o+ cos o.
The chart representing the complete solu-
tion of a right-angle triangle is shown in
Plate VIII. It is of universal use in the

diagonal DB by the expression
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graphic solution of right triangles, but it is
here presented as an accessory chart, to be
used in connection with the charts shown in
Plates VI and VII. Three small index dia-
grams have been added as guides in the use
of the chart. For the convenience of geolo-
gists, for whom this chart has been primarily
constructed, the terms vertical distance, hori-
zontal distance, slope distance, and angle of
slope have been placed on the chart to prevent
ambiguity in its use. Also as in the preceding
charts, the calibrations are given as 100, 200,
300, etc., instead of 1, 2, 3, etc., for reasons
stated on page 45.

USE OF CHART.

A straight edge or, better still, a piece of
transparent or semifrosted celluloid with a
black line ruled on the underside is required
to solve equations (10) and (11). If, for ex-
ample, o and A are given, connect the s value
on AD (fig. 7) with the & value on BC, and the
intersection on AC will give the value of s.
Or if ¢ and s are given, connect the ¢ value on
AD with the s value on AC, and the continua-
tion of this line intersecting BC will give the
value of & on BC. Similar solutions are used
when ¢, s, and ¢ are involved. For equation
(12) a piece of transparent or semifrosted
celluloid will be required, on the underside of
which are drawn two black lines intersecting
at right angles. One of these lines is placed
to pass through the given values of ¢ and #,
on CD and BC, respectively, and the other re-
quired to pass through the point C. Then the
continuation of the line passing through C
will show on DB the value of o.

TRIGONOMETRIC COMPUTER.
OUTLINE.

Two good reasons exist for the use of a trig-
onometric computer. First, the geologist or
surveyor will have numerous formulas to solve
which, though essential, are not frequently used.
It would be impracticable to have an aline-
ment chart for every such formula, and it
would be a laborious task to prepare so many
such charts. Second, such charts, when re-
duced to a size which can be carried in the
field, might not give sufficiently accurate results,
particularly when the formulas are complex.

The alternative is some graphic computing
device, which is accurate enough for general
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purposes and compact enough to be carried
without difficulty in the field. The straight
slide rule at once suggests itself as an instru-
ment for this purpose, but it is open to two
main objections—it is not of convenient shape
to be easily and safely carried, and it is not
easy to use for the solution of trigonometric
formulas.

To fill this distinct want, the writer has
designed a circular slide rule, which will not
exceed five inches in diameter nor one
twenty-fifth of an inch in thickness, which will
be the equivalent in accuracy of a 12-inch
straight slide rule, and which can easily be car-
ried in a notebook, just as a protractor is car-
ried. The principal practical advantages of
this type of computer may be summarized thus:

1. It is compact and portable.

2. It enables all computations, including
trigonometric computations, to be accomplished
with the same ease and by exactly the same
operations.

3. It possesses a continuous scale, so that it
is never necessary to reset the instrument, as
it is with the straight slide rule, because the
answer may be off the scale.

4. Sufficient space is available through the
use of concentric circles, or of a spiral, to plot
the entire tangent scale, only half of which is
plotted on the straight slide rule. This makes
possible a direct setting to the tangents of
angles between 45° and 90° and to the cotan-
gents of angles between 0° and 45° doing
away with the necessity of computing these
values from reciprocals, as in the straight slide
o CONSTRUCTION OF COMPUTER.

A circular slide rule is constructed in exactly
the same way as a straight slide rule, except
that the calibration is computed and laid off
in angular instead of linear magnitudes. In
constructing a straight slide rule z inches long,
for multiplication and division, which is to
range from a scalar value of ¥ at one end to a
scalar value of z at the other end, the scale
modulus (M)\ is expressed as follows:

o
M=log y—log z
The calibration is computed by multiplying
the logarithms of each scalar value that will
appear on the scale by M.

For a circular or spiral slide rule, consider a

circle of indeterminate diameter depending on
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the size desired for the finished product.
Angular magnitudes are to be plotted, and as a
circle is measurable in degrees, the same
formula applies if 2z is considered to be the
angular extent of the scale. If several con-
centric circles or a spiral of several turns is
used to plot some one function, the circular
scale modulus is expressed thus:
Bl S

log y—log 2
where ¢ is the number of concentric circles or
the numbers of turns in the spiral.

The circular slide rule here considered was
computed with a circular scale modulus of 180
instead of 360. The logarithmic range from 1
to 10 is 1, but the logarithmi~ range from sin
90° to sin 0° 45’ is almost 2, and it therefore
requires twice aslong ascale
to plot the desired range of
sines as to plot the usual
numerical scale. If thenu-
merical scale is plotted to a
whole turn (360°), the sine
range will require two turns,
and if an answeris to be read
off in sines, it will be am-
biguous, as the index will
give two possible values.
To avoid this result an
angular range of 180° was
used for thenumerical scale,
which places the entire sine
scale in one turn. The
usual numerical calibration
therefore takes but half of
one turn, and to prevent
the index from yielding an
answer in the uncalibrated
half of the number scale,
the numerical range was
doubled—that is, to read
from 0.01 to 1, or from 0.1
to 10, as desired. Such a

51

any answer that is read off in tangents will
theoretically be ambiguous, as the index gives
two values, but practically the ambiguity is of
no consequence, for the two values given by the
index are so widely different that the operator,
if he knows roughly the magnitude of the
required answer, will be able to choose without
| difficulty the proper one.
| The calibration of this computer is shown in
figure 9. The outer circle is the number scale;
| the next circle inward is the sine scale; and the
tangent scale is placed inside the sine scale in
a two-turn spiral. This disk is mounted to
turn upon an underlying support which extends
outward a quarter of an inch or more and is
equipped with two overlying indexes, made
of transparent celluloid, which are attached to
the center of the disk. One of these indexes

Zero line

TRIGONOMETRIC COMPUTER

J.B.Mertie,Jr.
USEGS.

INSTRUCTIONS %
ultiplication: Set multiplicand to stationary index &
Mmogable index to zero line. Clamp movable index to
lower support, and bring multiplier to movable index.

Product will appear under stationary index.
Division: Set dividend to stationary index and movable
index to divider. Clamp movable index to lower sup-

port, and bring zero line to movable index. Quotient
will appear under stationary index.

Scale therefore takes aWhole FI1GURE 9.—Trigonometric computer for the solution of such problems as are readily solved with the

turn.

The tangent scale, if plotted with the same
angular range as the sine scale, requires twice
as long a scale as the sine scale, and in order to
obtain this range the tangent scale is plotted
in a two-turn spiral, the same circular scale
modulus being used as before. As a result,

12-inch straight slide rule.

turns freely, but the other is attached at the
outside to the underlying support and is there-
fore immovable. It is intended that the
freely moving index may be attached tempo-
rarily to the underlying support by pressure
with the thumb and one finger.
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USE OF COMPUTER.

It is easy to remember how to manipulate
this computer, because both in multiplication
and division the start is made at the stationary
index, and the answer is found at the same
place. Thus, in multiplication the multipli-
cand is set under the stationary index; the
movable index is set to the zero line of the
scale; and then, the movable index being
clamped to the underlying support with the
thumb and finger, the multiplier is brought
under the movable index; the product is then
found under the stationary index. In divi-
sion, the dividend is set under the stationary
index, and the movable index is set to the
divider and clamped; the zero of the scale is
then brought to the movable index, and the
quotient appears under the stationary index.

The computer also enables the operator to
read natural sines and tangents to at least three
digits, and by using complementary angular
values he can read the natural cosines and
cotangents. Secants and cosecants, though
rarely used, may be obtained by taking the
reciprocals respectively of cosines and sines.

SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1921.

As before stated, there is a twofold numer-
ical range from 0.01 to 1 or from 0.1 to 10. In
multiplying numbers by numbers, it is im-
material which of these scales is used; in fact,
a multiplicand can be selected in one and a
multiplier in another, and the product will be
correct. In multiplying numbers by trigo-
nometric functions, however, the true meanings
of these two number scales must be utilized if
the required answer is to be read as a trigo-
nometric function. These two scales in reality
represent any two number scales with a loga-
rithmic range of 1, in which the calibrations of
one are ten times the value of the calibrations
in the other. This condition is not unique to
this computer, being present in all duplex
slide rules, but is mentioned here merely to
prevent possible confusion in the use of the
computer. {

It is recommended that the computer be used
in the field for all computations, thus saving
the carrying of graphic charts or of a book of
logarithm tables. The computer is in effect
a graphic table of three-place logarithms
arranged for general computations.
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